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The advancing-front method is adapted to describe the evolution of open or closed
three-dimensional surfaces in terms of an unstructured grid consisting of quadratic
triangular elements. In science and engineering applications, the surface may be iden-
tified with a material interface, a free boundary, or a moving front. In the numerical
method, the geometrical properties of the surface and the coordinates of the triangle
vertices are computed either in terms of available analytical expressions, or by means
of interpolation through an underlying coarse grid. The shape and size of the curved
triangular elements are determined by the maximum magnitude of the mean or di-
rectional local surface curvature. Two algorithms are implemented: the first one for
simply connected open surfaces bounded by closed lines, and for closed surface with
plane symmetry; and the second for closed surfaces. In the case of open surfaces, the
discretization front advances from a one-dimensional boundary grid that traces the
bounding curve. The boundary grid is generated either by a one-dimensional version
of the advancing-front method, or by requiring a set of criteria based on local line
representation with circular arcs. In the case of closed surfaces, the discretization
front emanates from the point of the maximum mean curvature. In both cases, the
algorithm also interpolates to generate the values of surface geometrical or physical
variables such as temperature or concentration of a surface-active agent. The method
was tested by following the motion of several passive and active surfaces evolving
under the action of specified fields of flow, while performing occasional regridding
to ensure adequate spatial resolution. In one test, the large deformation of a viscous
drop subjected to an infinite simple shear flow at vanishing Reynolds number was
computed into the regime where a cigar-like shape is established, thereby extending
previous numerical computations for small and moderate deformations and repro-
ducing experimentally observed shapes. Overall, the adaptive-front method emerges
as an important tool in numerical studies of free boundaries or moving fronts and
should be useful in a broad range of applications.i99s Academic Press
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1. INTRODUCTION

The use of unstructured grids based on triangulations to describe the shapes of
dimensional contours and three-dimensional iso-scalar surfaces, material surfaces, anc
interfaces has been gaining increasing popularity in recent years [1-11]. Compared
structured grid that is defined in terms of global surface curvilinear coordinates, the
structured grid has several advantages: The local curvilinear coordinates over each tri
are non-singular, whereas the global curvilinear coordinates may have singular points
triangle shape and size may be controlled effectively to enhance the spatial resolutio
regions of particular interest; and the discretization is amenable to the meritorious fin
volume and spectral-element formulations for solving integral or differential equations o
an evolving surface. Examples are the Fredholm integral equations arising from bound
integral formulations of potential or Stokes flow, and the convection-diffusion differenti
equation for the transport of an insoluble surfactant.

The need for adaptive surface triangulation becomes evident by inspecting Fig. 1, wt
we present the shape of a file of liquid drops moving though a circular tube under
action of a pressure-driven Poiseuille flow [3]. At the initial instant, each drop has a spt
ical shape that is readily described by elementary triangulation based on the subdivi
of an octahedron. But as a drop starts deforming, a dimple develops at the back, anc
interface is no longer represented with adequate resolution. In this simulation, the ma
points move with the component of the velocity of the fluid normal to the interface al
with a certain tangential velocity. There is a wealth of other applications where a relia
description of evolving open or closed surfaces and the accurate computation of their
ometrical properties, including the mean curvature, is imperative. Examples include
flow suspensions of deformable capsules such as red blood cells, the evolution of th
dimensional vortex sheets, and the stretching and folding of interfaces in laminar or turbu
flows.

To prevent grid distortion, the tangential velocity of the marker points may be adjust
according to certain criteria involving, for example, the rate of change of the length
the edges of the triangle or the angles subtended between them [3, 7, 8]. One diffic
with this approach is that a satisfactory set of criteria involving the triangle size, skewne
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FIG. 1. Triangulation of the interfaces of liquid drops traveling through an ambient fluid in pressure-drive
tube flow [3].
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and the surface curvatures is difficult to devise. Even if this were possible, the assoc
minimization or optimization problem, whose solution produces the tangential velocity
the marker points, places a heavy burden on the numerical method [8]. Nakahash
Deiwert [12] developed a method for the optimal distribution of the grid points defini
a global structured grid based on variational principles and a grid-spring analogy. M
recently, Cristiniet al.[9] developed a procedure for regridding a three-dimensional surfz
based on the idea of allowing the triangles to relax to an equilibrium configuration. -
marker points are connected by, and move under the influence of, damped massless sj
optimal marker point connectivity is maintained by local reconnection; and a specified I
density of triangles is maintained by adding and subtracting marker points at regions w
the elastic tensions are large.

In this work, we develop a procedure for the dynamical regridding of an evolving thr
dimensional open or closed surface based on the advancing-front method. Originally
advancing-front method was developed, as a part of a finite-element procedure, for tria
lating a region in a plane [13, 14]. In recent years, the method was extended to handle
dimensional stationary surfaces with applications in aerodynamics [15—18]. The highlit
of the method in three dimensions are: adaptive triangulation according to a measure ¢
local surface curvature; reasonably uniform distribution of triangle sizes; effective con
of triangle skewness; and reduced user intervention. To the authors’ knowledge, the me
has not been implemented to handle the changing shapes of evolving surfaces by me.
regridding, although a step in that direction was recently madkngri [18] developed an
algorithm for grid refinement that incorporated interpolation of geometrical or other surf
variables from a crude to a refined grid.

In the first part of this work, we discuss an implementation of the advancing-front met|
for a grid consisting of curveduadratictriangular elements; previous work considere
planarlinear triangular elements. The interpolation of geometrical and other surface v
ables from the coarse to the refined grid is somewhat similar to that developezhhgr.”
[18], but there are several differences. We present two general algorithms applicab
two distinct classes of problems involving: (a) open surfaces bounded by single clc
lines, as depicted in Fig. 2a; or (b) closed surfaces whose exterior is a singly or mult
connected domain, as depicted in Fig. 2b. The algorithm for open surfaces is also apy
ble to closed surfaces that are symmetric with respect to a plane. In that case, duplic
by plane reflection produces the whole of the surface. The procedure for open surt
incorporates an algorithm for the discretization of a closed curve, which is done in
independent ways. The two methods are fit as stand-alone routines in problems invo
the motion of lines in two or three dimensions. Analogous algorithms for the optimal
tribution points along closed or periodic planar lines are discussed and reviewed in F
[19, 20].

In the second part of this work, we test and confirm the suitability of the advancing-fr
method for describing surfaces and fluid interfaces evolving under the action of a spec
field of flow. In test simulations, we consider passive interfaces advected by an imp
flow, and active interfaces whose shape affects the development of the flow. In all c
the grid points move with the velocity of the fluid, and occasional regridding is perforr
to ensure adequate resolution. In the most demanding tests, we combine the regri
method with a boundary element method for Stokes flow to describe the large deform:
of a liquid drop immersed in simple shear flow, and illustrate the development of sler
shapes.
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(a)

(b)

FIG. 2. (a) lllustration of an open surface bounded by a closed curve and represented by a collection of cu
triangles. (b) A closed surface represented by a collection of curved triangles.

2. ADVANCING-FRONT METHOD FOR OPEN SURFACES

Consider a three-dimensional li@defined in terms of an arbitrary distribution IS
marker points bounding an open surface, as shown in Fig. 3a. The line segments betwee
successive points are edges of curved triangular elements that describe the surface. As
step toward implementing the advancing-front method, we redistribute the contour ma
points with two objectives: Achieve a reasonably uniform distribution of edge lengths
that adjacent triangles have comparable sizes; and resolve regions of high curvature.

We implemented and tested two independent contour-point redistribution algorithr
henceforth called bounding curve discretization algorithms, as will be described in
following two subsections. Best results were obtained when the algorithms were app
repeatedly and in alternating fashion a number of times, but each algorithm alone prodt
acceptable distributions, with the first algorithm being the best performer. In the sec
algorithm, the geometry of the surface does not play a role in the discretization of -
contour; that is, the method is oblivious to the curve being the boundary of a surface.

2.1. Contour Discretization by the AFM

In this algorithm, we employ a variation of the one-dimensional version of the advancir
front method developed by Nakahashi and Sharov [16]. The main idea is to proceed fi
the point of highest contour curvature toward regions of lower curvature, while contin
ously monitoring the magnitude of the curvature and the ratio of arc lengths of successi
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FIG. 3. (a)Aclosed line is represented by marker points. (b) Introduction of one or two new nodes along
a line; the labels 1, 2, 3 correspond to the discretization direction index of the point marked with a filled cil
(c) Introduction of a new node on a curve with pre-distributed marker points, before and after; the pair of inte
next to a point state the discretization direction index and the usage index.

generated segments. A large number of line segments are generated at regions of high
ture, and fewer segments are generated at regions of lower curvature. The steps are as fc

(1) Number the\; successive bounding curve nodes, moving in a desirable direct
according to the designated side of the triangulated surface apgeeside, as shown in
Fig. 3a. The point 1 coincides with the poiNt + 1.

(2) Describe the Cartesian coordinates of the contour in a parametric manner
respect to the reduced polygonal arc lengthsx(§); & =1p/lp 1ot Wherel p is the length
of the polygonal line connecting successive marker points starting from the first point,
I p 10t IS the perimeter of thé&l.-sided three-dimensional polygon.

In our implementation, we carried out the interpolation in terms of periodic cubic splir
and found that, in some instances, the cubic spline method without smoothing ca
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significant fluctuations in the computed curvature, thus undermining the effectiveness of
method. An alternative approach is to abandon the global representation and use insteac
cal representation based on circular arcs passing through trios of adjacent marker points

(3) Assigntoeach node of the bounding curve the value of either the local curvature
the contouk,, or of the maximum local directional curvature of the surface that is bounde
by the contourgyax. The first choice is appropriate when the curve is a stand-alone lin
the second choice is appropriate when the curve is the boundary of an open surface.
objective in both cases is to introduce a proper length scale that can be used to contrc
node spacing.

The local curvature of the contout, can be computed from the formukah’n =
—9°x/9&2, wheren is the unit vector normal to the line, ahds the line metrich = |9x /9% |.
A simpler method identifieg. with the curvature of the circular arc that passes through th
node of interest and two adjacent nodes on either side, as described in Ref. [21]. The c
putation of the maximum local directional curvature of the surfaggy, will be discussed
in Section 3.

(4) Label each node with discretization direction indethat takes the value of 1 to
indicate discretization only toward increasing node numbers, 2 to indicate discretizat
only toward decreasing node numbers, or 3 to indicate discretization in both directions.
use of this index prevents the discretization from exceeding the designated beginning
end of the line in parametric space, and eliminates the risk of accidentally deleting no
at the step (6)(g) to be discussed shortly. Initially, all nodes are labeled 3, except for n
1 thatis labeled 1, and nodé. + 1 that is labeled 2.

(5) Label each node with asage indexhat takes the value of 1 to indicate that the
node has been chosen previously as a starting point for the discretization, and 0 othen
Initially, all nodes are labeled with 0.

(6) The core of the algorithm is the curve discretization stage involving several st
steps, as follows. Steps (6)(b), (e) attempt to control the arc lengths of the line segm
and produce distributions with smooth variations.

(a) Among the nodes whose usage index is equal to 0, choose the one with
highest magnitude of the curvature. This node will be callectimsemode.

(b) Compute the arc lengths =2 sin(e/2)/|«c| or As=2sin«/2)/|kmax|, Where
ke andiyax are, respectively, the curvature of the contour and the maximum curvature
the surface at the chosen node, and a specified angle that is a free parameter of th
numerical method. If the chosen node is node NeH- 1, we skip steps (6)(c)—(e) and
proceed to step (6)(f). Otherwise, we reduce or amphifyy/to bring it within a specified
window (A Smin, ASmax)-

(c) If the discretization direction index of the chosen node has the value of 1
3, search the points on the left until the discretization direction label changes to 2.
the number of the point with the discretization direction label Zob# the discretization
direction label of the chosen node is 2, perform a search on the right until the label char
to 1. Let the number of the point with the discretization direction labeld. e some cases
only one ofp or g may be found, but this does not present a difficulty.

(d) Calculate the distancas; between nodep and p+ 1 and the distancas,
between nodeg andq — 1. CompareAs; andAs;,, choose the one with the smaller mag-
nitude, and call itAsger. Accommodations must be made for cases where opeoof) has
not been found.
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(e) If 1/¢ < As/Asrei< ¢, Whereg is a specified constant, keeys. Otherwise
replace it with the value oh sger

(f) Introduce anewnode; the chosen node and the new node are the end-point
anewsegment with approximate arc length equahig placed on the appropriate side of
the chosen node according to the discretization index of the chosen node, as illustrat
Fig. 3(b). If the value of the discretization index is equal to 3, then the segment is place
both sides. The coordinates of the new node are found by interpolation from the cubic-sj
representation.

(g) Examine whether one or more pre-existing nodes exist betweehdserand
thenewmode. If the discretization direction index of the pre-existing node is equal to 1
2, replace the new node with the pre-existing node that lies closest to the chosen noc
on the other hand, the discretization direction index of the pre-existing node is equal
remove this node from all lists once and for all. An example is illustrated in Fig. 3c.

(h) Update the node list, the discretization-direction list, and the usage list. A r
node located on the left or on the right of the chosen node receives, respectively
discretization-direction index 1 or 2. If a pre-existing node has replaced the new nod
step (6)(9), then it receives the usage label 1; otherwise it receives the usage label C
chosen node label is switched to 1; this node will not be used again as a starting poin
example is illustrated in Fig. 3c.

(i) With the node lists updated, reparametrize the curve and recompute the co
cients of the cubic spline.

(j) If all nodes have a usage list index of 1, stop the computation; otherwise ret
to step (6)(a) and repeat the process.

After the contour discretization has been completed, the ratios of successive line seg
arc lengths are re-examined. Steps (6)(b) and (6)(e) impose restrictions on the variatic
segment lengths, but the resulting distributions may violate the required criteria becau
the replacement of a new node with a pre-existing node in step (6)(g). Pronounced varia
become prevalent for contours with complex shapes. If the testing associated with a spe
parametep is not satisfied everywhere on the curve, then the amngdenodified, and steps
(1)—(6) are repeated until all length segment ratios fall within the rdbgg, ¢). Setting
¢ equal to 1 produces evenly spaced points, where the arc length between two poi
proportional to the minimum of the absolute value of the radius of directional curvatt
In our implementation, the modification @fwas done automatically by specifying factors
for increasing or decreasing its value.

The variables and parameters of the method just described are summarized in Ta
The number of contour points placed around the contour is an implicit function of -
four numerical parameteis, Asmin, ASnax @and¢, with the precise functional form de-
pending on the complexity of the contour shape. Several examples of point distribut
are presented in Fig. 4. Figure 4a shows the trace, in the azimuthal plane of left-and-
symmetry, of the interface of a liquid drop moving along a cylindrical tube in pressu
driven flow, computed from a dynamic simulation using the boundary-element metl
starting from the spherical shape [3]. The upper and lower panels show, respectively
point distribution before and after the application of the advancing front method w
a=0.3957, ¢ =1.4, ASnin=2SiNa/2)/|kc|, andASyax = 20ASvin. TWo notable features
are the dimpled shape of the interface at the rear of the drop, with regions of negative d
tional curvature, and the conical shape of the front, with regions of large positive curvat



68 KWAK AND POZRIKIDIS

TABLE |
Variables and Parameters for Contour-Discretization
by the Advancing-Front Method

Variable or parameter Function
1 Discretization direction Index Indicates direction of discretization.
2 Usage index Marks a previously examined node.
3 [ Specified angle to control point
spacing according to curvature.
4 (ASmin, ASmax) Specified window of point spacing.
5 ¢ Ratio of successive segment lengths

lies within the window (¢, ¢).

Inspecting the upper panel, we notice that the clustering of the marker points at the reat
produced an unacceptable point distribution, and this was a reason for halting the simula
The redistributed marker points shown at the lower panel describe the shape of the inter
in an economical fashion. In particular, the arc length between successive marker pc
varies smoothly even though the magnitude of the curvature shows pronounced variati

Figures 4b and 4c illustrate the performance of the method for three-dimensional lir
Before discretization, the point distribution in Fig. 4b is smooth everywhere except n¢
the two regions of high curvature. The advancing front method accommodates the st

(a)
BEFORE

FIG. 4. (a) lllustrations of improved distribution of marker points along the trace of a slipper-shaped dr
in the mid-plane [3]. (b), (c) Improved distributions of marker points along three-dimensional curves with lar
variations in curvatures.
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FIG. 4—Continued
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variation in curvature by allocating a larger number of point relative to the lower curvatu
region, while maintaining a smooth variation in arc length between adjacent nodes. Figur
demonstrates the effectiveness of the method under quite demanding conditions.

2.2. Contour Discretization by Local Representation with Circular Arcs

We developed and implemented an alternative contour discretization algorithm base
local interpolation that involves the following three tests:

(1) Compute the circular arc that passes through all trios of successive points us
the method discussed in [21]. If the angle subtended by the arc center and the first and
point is higher than a present threshold, then discard the middle point and introduce
new points at even intervals along the arc.

(2) Examine the arc length between two successive nodes. Ifitis greater than a pre
threshold, introduce a new node mid-way between the two nodes. The new node is ple
on the blended forward-backward arc.

(3) Re-examine the arc length between two successive nodes. Ifitis less than a pre
threshold, consolidate the two nodes into one node located on the blended forward-back
arc. Consolidation is allowed only if the resulting point distribution does not violate tt
first two criteria.

This method is much faster and easier to implement than the advancing-front met
described earlier, but may produce imperfect distributions where the ratios of the
lengths of successive pairs of points are unacceptably large or small, even though reg
of high curvature are described with good resolution. If the objective is to simply discreti
the line, pronounced arc length variations may be tolerated. But if the contour points
the vertices of triangles defining a surface, large variations will undermine the quality
the triangulation.

2.3. Open Surface Discretization

Like the contour advancing-front discretization method described in Subsection 2.1,
surface advancing-front discretization method uses the curvature of the surface to gen
flat triangular elements each defined by three nodes, advancing from regions of hig
curvature to regions of lower curvature. Ideally, the distance between two vertices c
triangle should be inversely proportional to the magnitude of the directional curvature
the surface in the direction of these two points. After the primary flat triangles have be
defined, six-node quadratic triangles that share the nodes of the flat triangles are gene
by surface interpolation. Theurface definition dataonsist of the coordinates of the marker
points defining the curved triangles, and a connectivity list associating the triangle and ve
numbers.

The method proceeds according to the steps outlined below. The geometrical varia
necessary in the individual steps are computed either from available analytical expressi
or by interpolation through an underlying coarse grid of quadratic triangular elements us
the method discussed in Subsection 2.4.

(1) Describe the contour bordering the open surface with a number of nodes using
methods described in Subsections 2.1 and 2.2, compute the distances between succ
marker points, and introduce a front list containing the numbers of the nodes that define
edges and the length of the edges.
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B

FIG. 5. Introduction of a new marker poir@ on a surface, appended at a distancefrom a node in the
direction of tangent vector at poi.

(2) Choose the smallest segment on the front list, label the end-points of this seg
as pointA and pointB, and compute the unit vectors normal to the surface at the locatic
of the end-pointsna andng. Introduce the mid-poinM on the line segmen#&B, and
approximate the unit vector normal to the surfagg, and the unit vector tangent to the
surface and perpendicular to the segmé&Btat the pointM, ty, with the expressions

- 1

o —— Xg — X 1
Xo — Xa] M X (XB — Xa) 1)

nu = %(nA-i-nB), tm
as depicted in Fig. 5.

(3) Compute the maximum magnitude of the normal surface curvature at the loca
of the pointM, denoted as$xmay. Let & andn be a set of two surface curvilinear coor-
dinates. The normal curvature in the direction of the generally non-unit tangential ve
t(x) =t: + At,, wheret; andt, are the unit tangential vectors along thands, axes, and
A is a free parameter, is given by [22]

a + 2bx + ca?

A= — oA
“O) = 2B 1 Caz

2
The coefficientsA, B, and C define thefirst fundamental fornof the surface, and the
coefficientsa, b, andc define thesecond fundamental forwf the surface. Both sets of
coefficient are computed either from available analytical expressions or from the param
representation of the curved triangles that define an underlying coarse grid. Differentic
the right-hand side of Eq. (2) with respectipand setting the derivative equal to zerc
yields a quadratic equation farwhose solution indicates the directions of the minimur
and maximum normal curvature. Once these directions are available, the maximum ¢
directional curvature follows from a simple computation.

(4) To define the third vertex of the triangle, designated as [@intFig. 5, we first
compute the preliminary triangle heights from the expressiom\s =2 sin(«/2) /|«max -
The numerical parameterdetermines the skewness of the triangle. To prevent the format
of too skewed a triangle, we further require that

1 AS
EASAB <5 < ¢ ASpg, 3
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wheres is a numerical parameter set equah8/2. If the computedAs lies outside this
window, then we set it equal to the upper or lower limit.

Next, we introduce the new poifl located a distancAas away from the poinM in the
direction ofty, as shown in Fig. 5. Because of the surface curvature, the @ointll not
necessarily lie in the surface. To prevent this tangential departure, we apply a modifica
of the iterative procedure developed by Nakahashi and Sharov [16] to p@Jjecto the
surface. When an underlying coarse grid is available, the procedure involves finding
grid point in the unrefined surface that is closest to the g@intlesignated by the subscript
s, and computing a sequence of points that successively approach the surface, usin
recursive formula

XU = O 4 %ns(ng (xs —x2)), 4)
wheren andx are, respectively, the unit normal vector and the position vector. This procedt
may fail to project the poin€’ on the surface at regions of high curvature, especially whe
the surface definition data are sparse. To prevent this pitfall, we further adjust the posi
of C’ using the interpolation method described in Subsection 2.4. At the final position,
compute the unit vector normal to the surface.

(5) In this stage, we decide whether the pdititwill be introduced as a new node,
or will be replaced by an existing node. For this purpose, we search for pre-existing no
within the radiusy As around poinC’, and form aocal point list y is a numerical para-
meter whose value was set equal to 0.75. The gdins$ also appended at the end of the
local point list, provided that it does not lie within a pre-existing triangle.

The points in the local point list are then sorted according to distance from the mid
point M, closest to farthest, and successive poltsom the local point list are used to
form the triangleAB P. A triangle is acceptable if it does not contain any other front-lis
nodes, and the bisect#*M does not pierce through existing elements or intersect the
edges. If, at any time, a point from the local list satisfies all conditions, then it is adoptec
nodeC, and the search terminates even though all points in the local point list may have
been examined. If no points from the local point list satisfies all conditions, then the va
of y isincreased by a preset factor, and this step is repeated until a suitable point is fol

(6) Having introduced the new elemeABC, we update the&onnectivity list the
front list, and thenode list In the connectivity list, the three vertices of the new element ar
recorded under the element number. In the front list, the current &&has well as any
edges of elemeriBCthat are already listed is removed, whereas those edges that have
been previously recorded are added. Likewise, if pGifitas not already been introduced,
it is added to theoint list

(7) Steps (2) through (6) are repeated until the front list has been exhausted.

(8) After the whole of the surface has been triangulated, a connectivity improvems
method callededge swappings applied to reduce the element skeweness. The meth
changes the common edges of neighboring elements based on the Delaunay circum
criteria for flat domains. We found that, even though the surface is curved, a sufficier
dense grid allows the successful application of the method implemented as described i
next paragraph.

The circumcircle of a flat triangle is the circle passing through the three vertices. T
center of this circle, called the circumcenter, may lie inside or outside the triangle.
the triangle becomes increasingly skewed, the circumcenter moves farther away from
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FIG. 6. lllustration of edge swapping between neighboring triangular elements to give better shaped elen
Swapping occurs when the circumcircle of triangl8 C contains a verted of the neighboring trianglé D B.

geometrical center of the triangle. As an example, let two adjacent triadss and
ADB share the vertices and B, as shown in Fig. 6. If the circumcircle of triangheBC
contains a poinD that lies outside this triangle, then the common eddreis discarded,
and a new edg€ D is introduced to create the new elemeABC and BC D from the
previous element&\BC and ADB. If the circumcircle does not contain such a point
thenthe triangle remains unchanged. The edge swapping technigue maximizes the min
angles of both triangles by reducing the radii of the circumcircles. Edge swapping doe:
introduce new marker points, neither does it change the total number of elements. It st
be noted, however, that in some cases edge swapping might lead to worse represent
of a discretized surface, and it is thus not a panacea.

(9) The flat triangular elements are transformed into six node quadratic triang
elements by projecting the mid-points of the edges onto the surface. The unit normal ve
of these points are computed by analytical evaluation by means of interpolation throu
coarse grid. The connectivity and the point lists are updated to include the mid-points.

The variables and parameters of the numerical method are summarized in Table II.
effectiveness of the method was tested and confirmed by performing a number of te:
be discussed in Section 4.

2.4. Grid-to-Grid Interpolation

The accurate computation of the position vector, the unit normal vector, and the directi
surface curvature are necessary for the successful implementation of the AFM. Whe
surface represents a fluid interface containing, for example, a surfactant, regridding
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TABLE Il
Variables and Parameters for Surface Discretization
by the Advancing-Front Method

Variable or parameter Function
1 Connectivity list Explained in text.
2 Front list Explained in text.
3 Paint list Explained in text.
4 o Specified angle to control edge length
according to curvature.
5 y Search parameter for admitting a new node.
6 ¢ Parameter to control a triangle height.
7 3 Parameter to control element aspect ratio.

be accompanied by interpolation for the surfactant concentration, and the interpola
should be sufficiently accurate so that unphysical Marangoni stresses due to surface-tel
gradients are not introduced. It was mentioned earlier that the interpolated geomet
and physical variables can be obtained either by means of analytical evaluation ol
interpolation through an underlying coarse grid. Interpolation is the only alternative wh
performing dynamic regridding in the course of a simulation, except at the initial instan

The interpolation method projects a new marker point onto the underlying old grid, a
interpolates for the surface variables through the element that hosts the projection.
performance of the method is sensitive to the identification of the host element.

Two methods were considered for identifying the host elementClet the marker point
of interest where interpolation is to be performed. The first method finds the host elemr
for point C by first projecting it in the plane that is defined by the three vertex nodes
each triangle, and then determining whether or not the projection lies within the trianc
The interpolation is carried out using the isoparametric representation; the host eleme
mapped from the physical space to the local paramétricspace, and the interpolation is
carried out as discussed in Ref. [21]. In particular, in order to find the appropriate vall
of £ andn, we solve a system of two quadratic equations that define the projection of 1
marker point. The implementation of this method is straightforward, but difficulties ari
when the projection lies too close to an element edge, whereupon the search method
find either no host element or two host elements. To prevent this occurrence, conditi
can be specified for the proper identification of the host element, but this complicates
numerical method. As an alternative, we implemented a simpler but more laborious met
that exploits the flexibility of the AFM.

First, we find the marker point on the old grid that is closest to the fgdi@ind identify
all elements that share this marker point. Second, we partition all elements in the list |
a network of sub-triangles based on the local parametric variglbéesi . In the present
implementation, increments of 0.01 were used Adr and An. Third, we compute the
Cartesian coordinates of every subgrid point based on the local parametric represente
Fourth, we temporarily store the subgrid point that is closest to the @oae pointC”.
The same procedure is followed for the rest of the elements listed in the first step, and
temporary poiniC” is continuously updated when a subgrid point closer to pGifitas
been found. Once all elements on the list have been checked, th&isirgplaced by the
pointC”, and the desired surface variable at the new poiigt computed by interpolation.
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It should be noted that a minor adjustment in the position of marker point during
triangulation does not impair the effectiveness of grid generation, neither does it vic
the imposed restrictions. On the contrary, the method effectively prevents errors caus
the iterative projection discussed in step (7) of the surface discretization, and minim
possible surface distortions caused by continuous re-triangulation.

To test the effectiveness of the method, each component of the interpolated unit ve
normal to a biconcave disk were graphed over the entire surface. Since, the numb
elements and marker points vary from the new grid to the old grid, the graphical repre
tation is a proper way of examining the accuracy of the method. Figures 7a and 7b <
the x component of the normal vector distribution over the flat side of the original a
re-triangulated biconcave disk. Considering the moderate number of elements, and ke
in mind that the normal vector is a sensitive function of the surface geometry, the res
appear satisfactory.

3. ADVANCING-FRONT METHOD FOR CLOSED SURFACES

The method for triangulating a closed surface is similar in many respects to that fo
open surface discussed in Section 2. The main difference lies in the generation of the i
front list before the surface discretization. In the case of an open surface, the front li
generated by discretizing the boundary curve. In the case of a closed surface, the i
front list is generated by introducing a triangular element at the region of highest magni
of mean or directional curvature.

We begin by determining the marker point with the highest magnitude of the mean
vaturex, or directional curvature;, named poinA. Among all marker points defining the
elements that share the marker paive find the one with the highest magnitude or mea
or directional curvature, excluding poid named poinB. In the third step, we compute
the unit vector directed from poim to point B and the edge distanees = 2 sin(w/2) /km
or As=2sin(a/2)/xc, and determine a new location for poiBt The normal vector at
the new location is computed by interpolation, as discussed in Subsection 2.4. The
point C defining the triangleABC is determined by following steps (3)—(6) of the surfac
discretization method. The initial front list for the surface discretization contains the no
and length defining the edges of the triangular elerdeBC.

Once the front list has been established, steps (2)—(9) described in the surface
cretization method are applied to discretize the rest of the surface. The effectiveness ¢
method was tested and confirmed by performing a number of tests, as will be discuss
Section 4.

4. APPLICATIONS

The algorithms described in the preceding sections were applied to describe the sha
several stationary or evolving, open or closed surfaces. Sample results, along with a cr
discussion of the performance of the method, are now presented.

4.1. Stationary Surfaces

Figures 8a—8c show the triangulated surface of a biconcave disk whose shape is
ilar to that of an undeformed red blood cell, and Figs. 8d—8f show the triangula
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BICONCAVE DISK (ORIGINAL. ELEM:512)

05 ; N Y

BICONCAVE DISK (SYM. ELEM:352)

FIG. 7. Validation of surface interpolation. Gray-scale comparison ofxft®emponent of the unit normal
vector on (a) the regularly gridded of a biconcave disk and (b) the re-gridded surface with much fewer eleme

FIG. 8. Discretization of the biconcave disk and slipper-shaped drop by various methods. (a) Triangula
of a biconcave disk by projection of marker points descending from an icosahedron. (b), (c) Open-surface
closed-surface discretizations by utilizing the underlying grid shown in (a). (d) Magnification of a single slipf
shaped drop shown on Fig. 1. (e), (f) Open-surface and closed-surface discretizations by utilizing the under!
grid shown in (d).
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FIG.9. (a), (b) Evolution of aninitially flat disk whose center is located at the streamline of maximum veloci
of an unbounded parabolic flow, at successive times.

surface of the slipper-like droplet mentioned in the Introduction. Both shapes have a
flection symmetry with respect to a mid-plane. The triangulations were produced us
either the open-surface or the closed-surface discretization algorithm. In the first case
surface generated on the upper half-space was reflected to the bottom half-space to ¢
closed surface. Thus, whereas the open-surface algorithm produces a shape that respe
symmetry of the shape, the closed-surface algorithm may generate triangles whose €
cross the mid-plane. Regridding was effected by interpolation through the original g
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FIG. 9—Continued

that was generated by analytical expressions or supplied from the results of a dynat
simulation [3].

For the open-surface triangulations shown in Figs. 8b and 8e, weousdti315 and
0.375, respectively, for the biconcave disk and the slipper shape. In both cases, the red
grid is comparable in quality, or superior to the original one. The improvement is particule
evident in the case of the slipper shape where the congested elements in the dimpled &
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the original grid are replaced by fewer elements, and the poorly represented high curva
region around the mid-plane is described by a denser concentration of elements. Fo
closed-surface triangulations shown in Figs. 8c and 8f, we used.17 for both the
biconcave disk and the slipper shape, and obtained triangulations that are comparak
quality with those resulting from the open-surface triangulation. The CPU time necess
for these triangulations is on order of a few minutes on a SUN SPARCstation 20. T
closed-surface discretization is faster than the open-surface discretization. The differe
is due to additional work necessary for checking the line segment variation in the cu
discretization portion of the method.

4.2. Evolving Surfaces

In a more demanding series of tests, we used the open-surface discretization algor
to adaptively describe the evolution of several types of surfaces that are convected e
passively or actively under the action of a specified flow. The marker points are mate
point particles moving with the fluid velocity. In the case of an active surface, the veloc
depends on the instantaneous shape of the surface or, more precisely, on the instanta
relative position of the marker points.

Passively deforming disk in parabolic flowFigures 9a—9b show the evolution of a flat
circular disk convected passively in an unbounded rectilinear parabolic flow. At the i
tial instant, the disk is placed perpendicular to the streamlines of the unidirectional flc
and its center lies on the streamline with the maximum velocity. The numerical para
eters were kept at the fixed values=0.523 and¢ = 1.4 throughout this computation.
Regridding was performed at the times corresponding to the shapes displayed. As
disk is stretched, while remaining axisymmetric, the number of elements is increase
a monotonic fashion so that the surface is described with adequate resolution at e
stage.

Figure 10 shows the evolution of a disk whose center lies off the axis of the parabc
flow. These results were obtained with=0.807 and¢ = 1.4. In this case, the disk de-
forms in a non-axisymmetric fashion and maximum mean curvature develops off
axis. The quality of the adaptive triangulation is comparable to that of the axisymmet
deformation.

Deformation of aviscous drop in simple shear flown the mostinteresting and computa-
tionally intensive series of tests, we combined the advancing-front method with a bounc
integral method for Stokes flow to compute the large deformation of a liquid drop wi
viscosityau suspended in an infinite ambient fluid with viscosityunder the action of a
simple shear flow directed along tkeaxis with velocityu = (Gy, 0, 0); G is the constant
shear rate, and the interface has a constant surface tensitie boundary element method
is described in detail in Refs. [1-4]. Briefly, the numerical procedure involves solving
integral equation for the three components of the velocity over the interface, where
solution is assumed to vary in a quadratic fashion over the curved six-node triangles.
mean curvature of the interface involved in the integral equation is computed analytic:
from the local parametric representation.

Several previous experimental, analytical, and numerical studies have shown that wh
is less than approximately 4, there is a critical capillary nun@zee nGa/y above which
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the drop continues to deform without reaching a steady shape, and this leads to disintegr:
or breakup at long times;is the equivalent drop radius. The process of continued deform
tion and disintegration was described in qualitative terms by Rumscheidt and Mason [
When is higher than about 4, the drop deforms and reaches a steady state irrespect
of the value of the capillary number.

The deformation of the drop is typically described in terms of the Taylor deformatic
parameteD = (L — B)/(L + B), whereL and B are the maximum and minimum drop
dimensions in thexy plane. The orientation of the drop can be expressed in terms
the angled that the maximum axis of deformation forms with tkeaxis. Figures 11a
and 11b show graphs dd and 6 at steady state fok =1 computed from the present
simulations with the open-surface triangulation followed by reflection, along with resu
presented in previous experimental and computational investigators. At low capillary nt
bers the present results coincide with those obtained by the previous numerical studie
Rallison [24] and Kennedgt al. [1], and are in excellent agreement with the experimen
tal results of Rumscheidt and Mason [23]. As the capillary number is raised, the pres
results stay close to the experimental results almost all the way up to the critical capill
number of 0424+ above which steady stapes are not established. Prior numerical res

(a)

08
x  boundary integral method with regridding

07k A boundary integral method, Kennedy

' o boundary integral method, Rallison

O experimental, Rumscheidt & Mason
small deformation theory, Cox
0.6 o
w]
05 A
D x 0
04 A
s
03} N
]
A

02f
0.1t

0 1 1 1 1 i 1 1 1 L] 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Ca

FIG. 11. Deformation of a viscous drop in simple shear flow. Comparison of (a) the steady-state drop de
mation parameteb, and (b) the steady-state drop orientation adgheeasured in degress for viscosity= 1.0;
x, boundary integral computations; boundary integral computations of Kennestyal.[1], [J, boundary integral
computation of Rallison [24]0, experimental results by Rumscheidt and Mason [23]; the solid line represen
the asymptotic results by Cox [25] for small deformation.
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FIG. 11—Continued

show some deviations that may be attributed to numerical inaccuracies due to insuffi
triangulation.

Figures 12 and 13 illustrate sequences of deforming shapes following the impulsive a
cation of the simple shear flow, starting from the spherical shape. The first case corresy
toxr =1, Ca=0.45, and the second caseite- 0.08, Ca= 0.55. In both cases, the capillary
number is supercritical; that is, the drop continues to elongate without reaching a st
state. In the first case, we used a time step.01,0G, and carried out the simulation up to
time 80/G; in the second case, we used a time step@2?/0G, and carried out the simula-
tion up to time 56/ G. Each simulation required a total CPU time on a SUN SPARCstati
20 on the order of 5 days.

During the early stages of the deformation, the shapes of the drops shown in Figs
and 13 show similar behaviors, but differences arise when the deformation becomes |
In the first case, the drop develops a cylindrical shape with bulbous ends; in the se
case, a capillary Rayleigh instability develops during the final stages of the deformat
causing the drop to break up into two pieces. The capillary instability in the first case se
to be delayed by the appreciable viscosity of the drop fluid, or else is suppressed b
ambient shear flow. In the classification of Rumscheidt and Mason [23], the drop sh
in Fig. 12 shows a B-2 type of deformation, whereas the drop shown on Fig. 13 sh
a B-1 type of burst. Rumscheidt and Mason [23] recorded B-1 burst fod, and B-2
burst forA = 0.7, which seems to contradict the trends observed in our simulations. |
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(a) llustration of a continuously deforming drop foe 1.0 andCa=0.45 at timesGt= 1.6, 3.4,

FIG. 12.
4.6, 6.2, 7.8; (b) Plane view and three-dimensional perspectives at@mne7.8.

known, however, that the capillary number is animportant parameter in determining the

time behavior.

Inthe simulations described earlier, regridding by the AFM was done after a fixed num

of times steps, typically on the order of 20. In principle, triangulation should be enabl
when the quality of the grid—measured by the minimum internal angle of a triangle,
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FIG. 12—Continued

the angle subtended by the three points that define each side of a triangle, or a combir
thereof—falls below a specified level. In practice, in order to avoid capillary instabiliti
the time step is adjusted to scale with the minimum triangle size, and triangulation aff
fixed number of time steps is appropriate.

Repetitive triangulation with a fixed value of the discretization parameteads to an
excessive number of triangles at a relatively early stage of the motion, and these coul
be accommodated by the available computational resources. To circumvent this diffic
tests were performed on a slowly deforming drop for a short period of time to underst
the behavior of the performance of the AFM in more quantitative terms. Figure 14 sh
a graph of the total number of elements versus the normalized maximum curvature o
interface for several values of the parametekVith these results as a point of departure
the following empirical polynomial equation was adopted to control parametethe time
stepi,

a® =o' 4+ 2y(AD — AD* - AD%)/180

whereAD =D® — D@D andy is a relaxation factor. All simulations were performec
with an initial value forx of 0.28, and the coefficient was chosen to lie in the range (0, 2)
depending on the value of the capillary number.
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